Journal of Global Biosciences

Peer Reviewed, Refereed, Open-Access Journal ISSN 2320-1355

Volume 13, Number 1, 2024, pp. 9904-9918

Website: www.mutagens.co.in

URL: www.mutagens.co.in/jgb/vol.13/130101.pdf

Research Paper

EFFECT OF DIFFERENT CONCENTRATION OF MANGANESE ON PHYSIOLOGICAL AND BIOCHEMICAL PROPERTIES OF WHEAT PLANTS GROWN IN DEGRADED SOIL

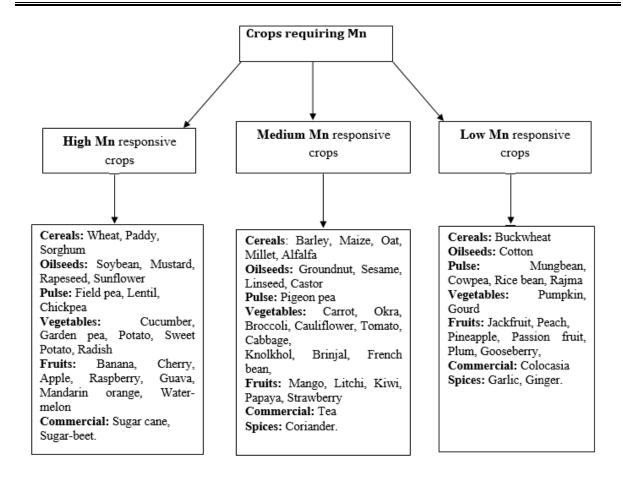
RAHUL VERMA, AMIT KUMAR SINGH, SWATI SINGH and AFREEN NAAZ

Plant Nutrietion and Stress Physiology Lab, University of Lucknow, Lucknow India.

Abstract

Wheat (*Triticum aestivum* L. variety: HD-2967) plants were grown in degraded soil with different concentration of Manganese viz; (Deficient, $10\mu m$, $50\mu m$, $100\mu m$) in the form of MnSO4 under controlled glass house conditions and were analysed for different physiological parameters viz; plant height, leaf area and RWC. Plants showed maximum growth in $10\mu M$ of Manganese supply but Manganese absent (00.00 μM) or deficient level of Manganese sulphate supply ($50\mu M$) and toxic level ($100\mu M$), showed poor plant growth, with Hoagland treatment. Manganese plays very important and effective roles in plant growth and cellular metabolisms like 'oxidation and reduction processes', and transport of electrons in photosynthesis process. Manganese also plays an important role in the activities of various enzymes like Catalase, Peroxidase and Carotenoid. Biochemical analysis of enzymes like Catalase, Peroxidase were also analysed and found that their activities were greater in $10\mu M$ of Manganese supplied plants than the others.

Key words: Wheat, Plant height, Leaf area, Catalase and Peroxidase etc.


INTRODUCTION

Manganese (Mn) is one of the essential micronutrients required for growth of plants [Foy *et al.*, 1978], humans and animals. It is essential for reproduction, carbohydrate/lipid metabolism, brain functioning [Greger, 1999] and neurotransmitter synthesis [Golub et. al. 2005] in humans and animals. Deficiency of Mn in humans may cause anorexia, weakness, and apathy (Huang *et al.*, 1989). More than 30% of the world's population is affected by the micronutrient's deficiencies. And manganese is the eleventh most abundant element forming the earth crust and its concentration is about 0.1% [Emsley, 2003]. It is found along with the other minerals contain elements such as

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

oxygen, carbon, silicon, sulfur, and chlorine [Turekian & Wedepohl, 1961]. Manganese in the soil ranged from 20 to 3000 ppm. Divalent nature of manganese (Mn²⁺) is absorbed by clay minerals and organic materials (humus) and divalent form manganous is more stable and absorbed by plants [Turekian & Wedepohl, 1961; Malakouti& Tehrani, 1999]. Manganese is mainly absorbed in the form of Mn (II) in plants and Mn (II) is translocated as a free divalent cation in xylem from root to shoot in different plants. Divalent nature of Manganese (Mn (II)) is absorbed by clay minerals and organic materials (humus) and divalent form Manganous is more stable and it is absorbed by plants [Turekian & Wedepohl, 1961; Malakouti& Tehrani, 1999]. Manganese occurs in the form of exchangeable Manganese, Manganese oxide, Organic Manganese, and component of Ferro-Manganese silicate minerals in the soil. Manganese ion (Mn (II)) size is similar with the Magnesium (Mg (II)) and it can be substituted as being co-factor or activator of many enzymes [Sharma, 2006; Führs et al.,, 2010; Pandey, 2020]. Manganese reactions with soil are quite complex [Yang & Deng, 2008]. Thus, the dynamics of Manganese in soil are mostly represented by concept of balance of soluble form of Mn (II) and insoluble Mn-oxides (MnOx) [Gupta, 1986; Sharma, 2006; Yang & Deng, 2008]. Therefore, in plants Manganese play an important role in redox process and Manganese is also serves as electron storage for delivery to the chlorophyll reaction centers [Millaleo et al.,, 2010].

Manganese is the most important and essential micro-nutrient that, relative to iron-oxide, is required by plants after Manganese in large quantity. Manganese application to the plant in many ways through the soil application, foliar sprays, and seed treatments and so on. Nonetheless, every method has its own pros and cons. For instance, soil-applied micronutrients may get fixed within soil and may thus become unavailable for the plants [Christensen 2005]. Difficulty in the uniform application of small quantity of micronutrients [Ryan *et al.*, 2013] and its rapid conversion to plant unavailable oxidized forms within soil [Reuter *et al.*, 1973] is some of the other problems associated with Mn soil application. Crops can be divided into three major groups based on the Mn requirement, such as high Mn responsive, medium Mn responsive and low Mn responsive [Brouder *et al.*,, 2003] an schematic figure is given below.

The deficient level of Manganese in soils is responsible for the drastic differences in their range and their ability to grow crop species and cultivars. Generally, the critical tissue Mn requirement lies between 10-20 mg Mn kg-1 for most plant species. Soybean, for example, is a high Mn-requiring plant and its root nodule Bacteroids use 'nicotinamide-adenine di-nucleotide (NAD)'-malic enzyme activated by Mn to obtain energy from the plant. In order to release fixed nitrogen from root nodules into leaves and growing pods, Mn dependent enzymes are needed [Winkler *et al.*,, 1985]. The concentration of Mn in rice stems and leaves increased with the rise in Mn levels [Alam, 1985]. The application of Mn substantially increased the consumption of Mn in wheat plants, suggesting that the requirement of Mn for wheat is higher than for other crops [Fageria and Baligar, 1997].

Mostly, Mn-deficient plant exhibits small chlorotic patches in the interveinal areas of the upper middle leaves. At severity these patches increase in size and form chlorotic strips in the monocot crops (barley, rice etc.). While in di-cots, chlorotic mottling in leaves has been described [Sharma, 2006]. At severe deficiency conditions,

interveinal areas turn necrotic with the development of reddish-brown coloration, and sometimes followed by splitting of lamina [Agarwala & Sharma, 1979].

Manganese is found in different oxidation forms (+2, +3, +4, +6, +7), and the most stable biological oxidation state is Mn⁺² significant to biochemical responses of plants have been reported [Sharma, 2006; Schmidt et al.,, 2015]. However, redox cycling of oxidation states is +2, +3, and +4 present in the rhizosphere of plants [Sharma, 2006]. Some metallo enzymes in plants have been identified as Mn-SOD, oxalate-oxidase [Sharma, 2006; Whittaker et al.,, 2007; Broadley et al.,, 2012], and involve in photosystem II are common Mn co-ordination geometries in plants cellular metabolism [Pandey, 2020]. Also, it is present in proteins in octahedral, square pyramidal and trigonal bi-pyramidal and tetrahedral forms of Mn have fast exchange legend capacity, can easily replace by other divalent ions, like as Ca, Mg, Fe, Co, Zn, and Cu etc. [Schmidt et al.,, 2015; Pandey, 2020]. Among the transition of biologically relevant elements, Mn⁺² ions are the hard to borderline ion have large density and low polarization prefer for the coordination with hard legends like as negative charged oxygen atoms in the group of asparagines', carboxylase, and glutamine as well as the polar oxygen atoms within carbonyl group of imidazole ring in histidine is another important legend for Mn⁺² [Sharma, 2006; Broadley et al.,, 2012].

Manganese involved in photosynthesis, biosynthetic pathways of amino acids, in regulation of nitrogen metabolism, protection of cellular components etc. in plants [Chen et~al.,, 2006; Sharma, 2006]. It catalyzes oxygen evolution in biological system. It is a metal co-factor in the oxygen evolving complexes (OEC) in the higher plants for photosynthesis process [Sharma, 2006; Mousavi et~al.,, 2007]. Manganese is co-factor or constituents of many metalloid-enzymes in most of the plants involve in various biosynthetic pathways [Burnell, 1988; Chen et~al.,, 2002; Pandey, 2018], about 30 types of enzymes in cellular metabolism of plants such as the activation of phenylalanine ammonialyase in the shikomic pathway; Golgi localized glycosyl transferases (localized in Golgi bodies), de-carboxylase and de-hydrogenase in the tri-carboxylic acid [Hoganson et~al.,, 1993; Sharma 2006; Pandey, 2018; Pandey, 2020]. And the most-well-studied function in plant metabolism that depends on Mn is the water-splitting reaction in PSII, which is the first step of photosynthesis. This process requires the tetra-Mn cluster Mn₄O₅Ca to split two water molecules into four electrons, four protons, and molecular O₂ [Bricker et~al.,, 2012].

MATERIAL AND METHODS

Wheat (*Triticum aestivum* L. variety: HD-2967) plants were grown in the glass house under controlled conditions. Soil for experiment was collected from an area near to banks of river Gomti near Gosaiganj, Lucknow. Soil sample was filtered with the help of sieved and the filtered soil sample was filled in mud pots and used polythene bags in between soil sample and mud pots to stop drainage of water from soil sample to mud pots. The composition of nutrient solution excluding 8 mM Ca (NO₃)₂, 4 mM KNO₃, 2 mM MgSO₄, 1.33 mM NaH₂PO₄, 0.1 mM Fe EDTA, 0.33 mM H₃BO₃, 1.0 μM CuSO₄, 1.0 μM ZnSO₄, 0.1μM Na₂MoO₄, 0.1 M NaCl, 0.1μM CoSO₄, 0.1 μM NiSO₄, and Mn supplied at four level (Mn absent, 10 μM, 50 μM, and 100 μM) in form of MnSO₄.

After some time, germination of Wheat seedling, wait for 25 to 30 days for proper growth of Wheat seedlings, Hoagland's nutrient solution including Mn at above prescribed level were supplied daily. Plant was examined on daily basis for changes in growth parameters and visible symptoms of Mn-Deficient and high level were recorded. After 50 to 60 days, collect the plant sample from mud pots and send the plant sample for laboratory to analysed physiological and biological parameters of collected sample.

Chlorophyll and relative water content were estimated in comparable of young and fresh leaves. Chlorophyll extraction in 80% of acetone solution and centrifugation at 5000rpm and measured on spectrophotometrically Perkin Elmer UV/VIS Lambda Bio 20 [Lichtenthaler, H.K., 1987].

Relative water content was analyzed, firstly cut the leaves in disc shaped with the help of cork borer and filled these leaf parts in glass distill water for 4 hours at 5° C. Thereafter, leaf sample are placed in oven at 55° C for 24 hours, and reweight again for dry weight. The relative water content (RWC) was calculated by the formula: RWC = $(F.W-D.W/T.W-D.W) \times 100$.

Catalase (CAT) was extracted by homogenization of fresh leaf tissue in ice cold distilled water (1:10) with mortar and pestle. The reaction mixture containing0.005 M H₂O₂ and 0.025 mM phosphate buffer (pH- 7.0) was incubated with 1 ml of suitably diluted enzymes extract at 25°C for 5 min. The reaction was stopped with 2 ml 2N H2SO4 and mixture was titrated against 0.1 N KMnO₄ [Euler, H.,Vin and Josephson, K., 1927].

Peroxidase (POD) was extracted by homogenization of fresh leaf tissue with ice cold glass distilled water in a clean, chilled motor and pestle. The homogenate was stained through four layer of muslin cloth. The reaction mixture for POD contained 2 ml of 0.1μ MPO₄ buffer (pH- 6), 1ml of 0.01 % H_2O_2 and 1 ml of 0.5 % p-phenylenediamine. The reaction was started by adding 1 ml of enzyme extract to mixture. After 5 minute incubation at 25°C, the reaction was stopped with 2 ml 4N H_2SO_4 . Optimal density was measured at 485 nm change in OD, was calculated [Luck, M., 1963].

For Proline extraction, fresh leaves were homogenized in sulpho-salicylic acid. After filtration suitable aliquot was taken with ninhydrin reagent and glacial acetic acid and boiled for 1 hour. The color was extracted in toluene and read absorbance at 520nm [Bates, L. S., Weatherly, P. E., 1962].

For analysis the Hydrogen peroxide, chilled leaf tissue was homogenized in chilled acetone and homogenate was filtered. The filtrate was brought to volume by water to adjust ratio of acetone in water 2:1. Take suitable amount of aliquot; add 2.5ml of hydrogen per-oxide and water add 0.5ml of titanic tetra chloride and 1ml of concentrated ammonia solution and centrifuge the aliquot at 10000 rpm for 5 minutes. Precipitate was solubilized in 5N of 4ml H₂SO₄, read the absorbance at 415 nm by using spectrophotometer [Brennan and Frenkel, 1977].

For Assay of Ascorbate peroxidase Plant material was homogenized in 50 mM phosphate buffer pH 7.0 containing1% insoluble polyvinyl pyrrolidone (w/v) at 4°C with mortar and pestle (0.1gfresh weight mL-1 buffer) filtered through four layers of muslin and centrifuged at 15,000 rpm for 10 minutes. The supernatant obtained was designed as crude enzyme extract.50 mM phosphate buffer (pH 7.0), 0.5 mM ascorbate,0.1 mM EDTA, 0.1 ml enzyme extract, add 0.1 mM H₂O₂ to total volume 3 ml, decrease in absorbance was recorded at each 30s interval for 3 minutes at 290nm in UV spectrophotometer [Nakano and Asada, 1981].

Table1: Effect of different concentration of Manganese supply on physiological parameters of Wheat plant like as: plant height, Leaf area and relative water content of Wheat (*Triticum aestivum L.* var., HD 2967) plants.

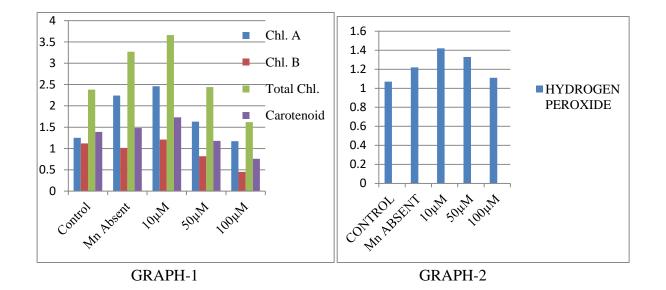

Physiologica parameters	l μΜ Manganese supply						
	Control	00 μΜ	10 μΜ	50 μΜ	100 μΜ		
	Unit Cm (After 60 days)						
Plant height	46.9	51.23(+9.23)	55.3(+17.91)	52.17(+11.23)	49.28(+5.07)		
	Unit Cm ² per plant(After 60 days)						
Leaf Area	11.36	18.17(+59.94)	25.92(+12.16)	16.34(+43.83)	14.28(+25.70)		
	Unit mg (After 60 days)						
R.W.C.	90.35	91.19(+0.91)	96.06(+6.31	1) 94.93(+5.06)	92.68(+2.57)		

Table 2: Effect of different levels of Manganese supply on the concentration of chlorophyll and Carotenoid in Wheat (*Triticum aestivum* L. var., HD 2967) plants.

μM Manganese supply					
Control	00 μΜ	10 μΜ	50μΜ	100 μΜ	
mg g ⁻¹ fresh weight					
1.25	2.24	2.46	1.63	1.17	
1.12	1.01	1.21	0.82	0.45	
2.38	3.27(+37.39)	3.66(+53.78)	2.44(+2.52)	1.62(-31.93)	
1.39	1.48(+6.47)	1.73(+24.46)	1.18(-15.10)	0.76(+45.23)	
	1.25 1.12 2.38	1.25 2.24 1.12 1.01 2.38 3.27(+37.39)	Control 00 μΜ 10 μΜ mg g-1 fresh v mg g-1 fresh v 1.25 2.24 2.46 1.12 1.01 1.21 2.38 3.27(+37.39) 3.66(+53.78)	Control 00 μΜ 10 μΜ 50μΜ mg g ⁻¹ fresh weight 1.25 2.24 2.46 1.63 1.12 1.01 1.21 0.82 2.38 3.27(+37.39) 3.66(+53.78) 2.44(+2.52)	

Table 3: Effects of different concentration of Manganese sulphate on the activities of Hydrogen peroxide, Catalase, Peroxidase, Ascorbate peroxidase, and Proline in leaves of wheat (*Triticum aestivum* L. var., HD 2967) plants.

Enzymo	μM Manganese supply								
Enzyme	Control	00 μΜ	10 μΜ	50 μΜ	100 μΜ				
		μ mol 100mg · 1 Fresh weight							
Hydrogen	1.07	1.22(+14.01)	1.42(+32.71)	1.33(+24.29)	1.11(+3.73)				
peroxide									
		μ mol H ₂ O ₂ decomposed mg ⁻¹ Protein weight							
Catalase	1.2	0.8(-33.33)	1.7(+41.66)	•	1.1(-8.33)				
Catalase	1.2	0.0(33.33)	1.7 (* 11.00)	1.5(125.00)	1.1(0.55)				
		Units mg-1 Protein							
Peroxidas	0.425	0.380(-10.58)	0.53(+25.41	0.49(+15.52)	0.416(-2.11)				
e)						
		μ mol Ascorbate oxidized mg ⁻¹ protein							
APX	35.35	37.76(+6.81)	52.56(+48.68	40.06(+13.32	32.53(-7.97)				
))					
		μ mol g ⁻¹ Fresh weight							
Proline	3.55	4.66(+31.26)	1.83(-48.45)	2.83(-20.28)	4.106(+15.66)				

NOTE- Graph -1 represents the higher content of chlorophyll at 10 μM of Manganese sulphate.

Graph-2 represents the hydrogen peroxide concentration at 10 μM of Manganese sulphate.

Graph-3 represents the higher activity of enzyme Catalase at 10 μ M than the other level. Graph-4 represents the higher activity of enzyme Peroxidase at 10 μ M than the other level.

Graph-5 represents the higher activity of APX at 10 μ M compare to other Mn level. Graph-6 represents the lower level activity of Proline at 10 μ M of Mn sulphate level.

RESULTS AND DISCUSSION

The optimal growths of Wheat (Triticum aestivum L. var., HD 2967) plants were observed at $10\mu m$ Manganese sulphate. On the other hand the wheat plants received less than $10\mu m$ and more than $10\mu m$ of Manganese supply showed, decrease in the plant growth, relative water content and leaf area of plants. Deficient concentration of Manganese supply resulting in the growth retardation of plants and significant decline in plant height and leaf area. Minimum plant growth and relative water content was observed in deficient level (Manganese absent) and so on (50 μm & 100 μm). Plant growth and height showed abnormal pattern in wheat plant, i.e., $10\mu m$ Manganese supply showed normal and maximum plant height and minimum plant height in deficient level (Mn absent) and so on.

The value of relative water content (RWC) decreased significantly in the leaves of Manganese deficient (Mn Absent) as compared to 10 μ M of Manganese supply and the value of relative water content was also decreased in 50 μ m towards 100 μ M of Manganese supply. This result showed that the Mn deficient plants show susceptibility to drought stress because Mn deficiency reduced the waxy content that increased transpiration water loss and lower water use efficiency. The value of relative water content is the probably the most appropriate measure of plant water status in terms of the physiological consequences of cellular water deficit in plant leaves. And the value of relative water content was optimum in 10 μ M and the least value was observed in 100 μ M of wheat sample. The plant height after 60 days, maximum plant height was recorded in 10 μ M of wheat plant and minimum was 100 μ M, and the leaf area was also maximum in 10 μ M and minimum in 100 μ M of Manganese supply

In this experiment the concentration level of chlorophyll in leaves of wheat plant was decreased significantly with decreasing and increasing the concentration of Manganese from deficient (Mn absent) to $100\mu m$. These results clear the important and critical role of Manganese ion as a co-factor for photosynthesis light dependent reactions. The Carotenoid concentration was also decreased in Manganese deficient (Mn Absent) supply of wheat plant as compared to $10\mu m$ of solution. Lower chlorophyll and Carotenoid concentration in plant leaves is indicator of senescence, stress and damage of plant tissue and the photosynthetic apparatus, expressed by faster breakdown by lower level of chlorophyll presence.

After the treatment period, i.e., 15 to 20 days the catalase enzyme activity was reduced in Manganese deficient (Mn absent) plants and showed the inability of the plants to overcome the oxidative damage. The optimum catalase [Evler and Josephson, 1927] enzyme activity was in $10\mu m$ of Manganese supply and it also showed maximum plant growth. The optimum concentration of Catalase enzyme was observed in $10\mu M$ of Manganese ion supply of wheat plant and least concentration was present in deficient (Manganese absent) of Manganese supply.

The activity of Peroxidase in wheat plants showed very critical and important role of Manganese ion as a co-factor in non-specific enzymes. The activity of Peroxidase [Nakaro and Asada, 1981] was optimum in $10\mu m$ of Manganese supply and lowest activity was detected in Manganese deficient (Mn absent) level of supply and so on in $50\mu m$ and $100\mu m$. Peroxidase enzyme catalysis the oxidation of a substrate by removal of hydrogen which combines with hydrogen peroxide. The activity of Peroxidase enzymes also affects the degradation of hydrogen peroxide, removal of toxic compounds, defense against insect herbivore and some other stress related problems in plants.

The activity of Proline enzymes was increased in Manganese deficient (Mn absent) of Wheat plant and lowest concentration in $10\mu M$ of Manganese supply after 15 to 20 days of Hoagland solution supply. The activity of Proline also indicates the water stress in Manganese deficient plants.

In this experiment the activity of Ascorbate Peroxidase depended on catalyzing conversion of hydrogen peroxide into water by using an ascorbate as a specific electron donor. The activity of Ascorbate peroxidase in $10\mu M$ of Manganese supply in wheat plant is optimum level and the minimum activity was recorded at $100\mu M$ of Manganese supply.

CONCLUSION

The study was performed in degraded and non-irrigated soil collected from areas near to Gomti River at Gosaiganj in Lucknow district. Our study comes on conclusion that, the degraded or non-irrigated soils near the Gomti River may have low quantity of Manganese than the other soils. The Manganese itself found responsible for the optimal growth of wheat plants used in experiment when supplied at optimal level i.e. $10~\mu M$. The Manganese deficiency badly affected the plant growth, metabolic activities and

reproductive yield. Manganese stressed or Manganese deficiency induced water stress and weakens the complex defense mechanism in response to oxidative stress of plant metabolism. The toxicity of Manganese also affected plant's optimal growth and reproductive yield. Hence for better yield of crop and for a strong defense system against Abiotic stresses among plants, the optimal supply of Manganese is recommended.

REFERENCES

- Agarwala, S. C., and Sharma, C. P. (1979). Recognizing micronutrient disorders of crop plants on the basis of visible symptoms and plant analysis.
- Alonso Población, E., &Fidalgo Castro, A. (2014, July). Webs of legitimacy and discredit: narrative capital and politics of ritual in a Timor-Leste community. In Anthropological Forum (Vol. 24, No. 3, pp. 245-266). Routledge.
- Bates, L. S., Waldren, R. A., &Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. *Plant and soil*, *39*, 205-207.
- Brennan, T., & Frenkel, C. (1977). Involvement of hydrogen peroxide in the regulation of senescence in pear. *Plant Physiology*, *59*(3), 411-416.
- Brennan, T., & Frenkel, C. (1977). Involvement of hydrogen peroxide in the regulation of senescence in pear. *Plant Physiology*, *59*(3), 411-416.
- Bricker, D. K., Taylor, E. B., Schell, J. C., Orsak, T., Boutron, A., Chen, Y. C., ... & Rutter, J. (2012). A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. *Science*, *337*(6090), 96-100.
- Broadley, Martin, *et al.*, 2012. Function of nutrients: micronutrients. Marschner's mineral nutrition of higher plants, Academic Press: 191-248.
- Brouder, C., &Frabetti, A. 2003. QED Hopf algebras on planar binary trees. *Journal of Algebra*, 267(1), 298-322.
- Burnell, J.N., 1988, The biochemistry of manganese in plants. In: R.D. Graham, R.J. Hannam and N.C. Urens (eds.), Manganese in Soils and Plants, Kluwer Academic, Dordrecht: 125-137.
- Chen. et. al., 2006., Identification of phosphatises for Smad in the BMP/DPP pathway. Genes Dev. 20(6): 648-653.

- Christensen, Jens Frøslev, Michael Holm Olesen, and Jonas SorthKjær., 2005 The industrial dynamics of Open Innovation—Evidence from the transformation of consumer electronics. Research policy 34.10: 1533-1549.
- Emsley et. al., 2003, The factor structure for positive and negative syndrome scale (PANSS) in recent on-set pshycosis, Schizophrenia research, Volume 61, Issue 1: 47-57.
- Euler, H., Josephson, K., Myrbäck, K., &Sjöberg, K. (1928). Galaktosidasen. Die HydrolisierendenEnzyme der Ester, Kohlenhydrate und Glukoside: II. Teil SpezielleChemie der Enzyme 1. Abschnitt Die HydrolisierendenEnzyme der Ester, Kohlenhydrate und Glukoside, 311-327.
- Fageria, N. K., and V. C. Baligar., 1997 Response of common bean, upland rice, corn, wheat, and soybean to soil fertility of an Oxisol. Journal of Plant Nutrition 20.10: 1279-1289.
- Foy et.al. 1978. The physiology of metal toxicity in plants. Annu Rev Plant Physiology, 29: 511–566.
- Führs*et al.,*, 2010, Physiological and proteomic characterization of manganese sensitivity and tolerance in rice (*Oryza sativa*) in comparison with barley (*Hordeum vulgare*), Annals Bot. 2010 Jun; 105(7): 1129–1140.
- Golub MS, Hogrefe CE, Germann SL 2005., Neurobehavioral evaluation of rhesus monkey infants fed cow's milk formula, soy formula, or soy formula with added manganese. NeurotoxicolTeratol 27: 615–627.
- Greger JL, 1999., Nutrition versus toxicology of manganese in humans: evaluation of potential biomarkers. Neuro-toxicology 20: 205–212.
- Gupta, V. K.; Prasad, K. S.; Bakshi, M. P. S.; Langar, P. N., 1986, Improving the nutritive value of groundnut shells through fungal cultivation. Agricultural Wastes, 16 (3): 161-169.
- Huang, C. C., Chu, N. S., Lu, C. S., Wang, J. D., Tsai, J. L., Tzeng, J. L., ... & Calne, D. B. 1989. Chronic manganese intoxication. Archives of neurology, 46(10), 1104-1106.
- Iozumi, K., Hoganson, G. E., Pennella, R., Everett, M. A., & Fuller, B. B. (1993). Role of tyrosinase as the determinant of pigmentation in cultured human melanocytes. *Journal of Investigative Dermatology*, *100*(6), 806-811.

- Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In *Methods in enzymology* (Vol. 148, pp. 350-382). Academic Press.
- Luck, W., Klier, M., &Wesslau, H. (1963). Über Bragg-Reflexesmitsichtbarem Licht an monodispersenKunststofflatices. I. *Berichte der Bunsengesellschaft für physikalischeChemie*, 67(1), 75-83.
- Millaleo*et al.,*, 2010, Manganese as Essential and Toxic Element for Plants: Transport, Accumulation and Resistance Mechanisms, Journal of Soil Science and Plant Nutrition 10(4): 476 494.
- Morrow, A. J., Ford, T. J., Mangion, K., Kotecha, T., Rakhit, R., Galasko, G., ... & Berry, C. (2020). Rationale and design of the Medical Research Council's precision medicine with Zibotentan in microvascular angina (PRIZE) trial. *American Heart Journal*, 229, 70-80.
- O'Brien, S. J., Roelke, M. E., Marker, L., Newman, A., Winkler, C. A., Meltzer, D., ... &Wildt, D. E. (1985). Genetic basis for species vulnerability in the cheetah. *Science*, *227*(4693), 1428-1434.
- Pandey N., 2018, Role of plant nutrient in plant growth and physiology. In: Plant nutrients and Abiotic stress tolerance (ed. Hasanuzzaman M.et al), Springer Nature Singapore Pte Ltd: 51-98.
- Pandey, D. 2020. Work Stress and Employee Performance: An Assessment of Impact of Work Stress. International Research Journal of Human Resource and Social Sciences, 7: 124-135.
- Platt, J. P., Leggett, J. K., Young, J., Raza, H., &Alam, S. (1985). Large-scale sediment underplating in the Makran accretionary prism, southwest Pakistan. *Geology*, *13*(7), 507-511.
- Reuter, H., M. P. Blaustein, and G. Haeusle. 1973: Na—Ca exchange and tension development in arterial smooth muscle. Philosophical Transactions of the Royal Society of London, B, Biological Sciences 265.867: 87-94.
- Ryan, Kevin C., Eric E. Knapp, and J. Morgan Varner. 2013. Prescribed fire in North American forests and woodlands: history, current practice, and challenges. Frontiers in Ecology and the Environment 11.s1: e15-e24.

- Schmidt, C *et al.*, 2015: Recent Invasion of the Symbiont-Bearing Foraminifera Pararotalia in-to the Eastern Mediterranean Facilitated by the Ongoing Warming Trend. *PLoS ONE*, 10 (8).
- Sharma, 2006, Chemical composition and *in sacco* degradability of some fodder tree leaves, shrub leaves and herbaceous plants. Indian J. Anim. Sci., 76 (7): 538-541.
- Tang, C., & Chen, V. (2002). Nano filtration of textile wastewater for water reuse. *Desalination*, 143(1), 11-20.
- Turekian&Wedepohl, 1961, Distribution of some elements in some major units of the earth crust, Geo science world, GSA world, 72(2): 175-192.
- Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., ... & Deng, H. (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. *Cell stem cell*, *3*(5), 475-479.