Journal of Global Biosciences

Peer Reviewed, Refereed, Open-Access Journal ISSN 2320-1355

Volume 11, Number 7, 2022, pp. 9383-9392

Website: www.mutagens.co.in

URL: www.mutagens.co.in/jgb/vol.11/110702.pdf

Research Paper

INSECT DIVERSITY (EXCEPT ODONATA AND LEPIDOPTERA) ASSESSMENT OF ECOPARK, AN URBAN PARK IN KOLKATA, WEST BENGAL, INDIA

Lina Chatterjee, Tarak Samanta, Arjan Basu Roy, Saswati Sinha and Sumana Besra

Nature Mates-Nature Club, Kolkata, West Bengal, India.

Abstract

Ecopark is a protected urban park of Kolkata West Bengal, having an area of approximately 480 acres. A total of 55 species of 53 genera under 38 families belonging to 10 orders (Blattodea, Coleoptera, Dermaptera, Diptera, Hemiptera, Hymenoptera, Isoptera, Mantodea, Orthoptera and Zygentoma) are reported in this present Survey. The survey was done at Ecopark, New Town, during a two-year period, from June 2020 to May 2022. Of these, Hymenoptera shares maximum species (14) with species, followed by Hemiptera with 11 species, Coleoptera with 10 species, Diptera with 7 species, Orthoptera with 6 species. Mantodea, Blattodea each with 2 species, and Dermaptera, Isoptera, Zygentoma each with 1 species. This presentation also provides an overview of the insect faunal diversity in West Bengal conservation areas and the guidance of further proposed study. As an outcome, it is always remarkable to study the biodiversity of urban parks in cities where the natural habitat mostly never been removed. This is the first analysis of the variety of insects in Ecopark. The analysis conducted in this study offers fundamental information about the insect diversity in an urban park in a metropolis city. However, there is still a lot of more research that must be done in the long run for the future but the results signified that, besides national park, sanctuary; urban parks in cities also play a crucial role in preserving biodiversity.

Key words: *Urban Parks, Insect diversity, Order, Hymenoptera*.

INTRODUCTION

Bigger vertebrates have received more attention due to climate change and threats to their habitats, while invertebrates are frequently ignored [1]. But Of all the fauna, insects are the most successful and diversified, and they are crucial to the healthiest ecosystems [2]. There are several variables that affect insect diversity and abundance,

Author(s) agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 International License

including flower abundance, seed variety, plant structure, management, age, and environment [3]. In urban ecosystems, insects are essential for pollination, soil aeration, organic matter decomposition, nutrient cycling [4]. and In general, a decline in species richness is correlated with growing urbanisation [5]. There is evidence that insects are susceptible to change in urban settings like Habitat loss, fragmentation and land use changes [6]. Urban environments are recognized worldwide as hosts for creative strategies to preserve and increase biodiversity. Parks, one particular kind of urban green space, are significant biodiversity hotspots in urbanised habitats [7] [8]. Through citizen science initiatives and scientific education, insects may also be an effective tool for raising public awareness of nature and science [9] [10].

MATERIALS AND METHODS

Study area

The study was done at Ecopark (Figure 1), New Town, during a two-year period, from June 2020 to May 2022 (22.6031335 N 8.4671386 E). The park's 480 acres are made up of with many different microhabitat categories, including grassland, small forest with large trees, fruit trees, flower trees, vegetable plant, bushes, and shrubs. In one edges of the park, there is a small patch of marshland with cattail called as 'hogla' by locals. On the other side of the park there is a large freshwater lake with a surface area of around 104 acres. Beside that there are several man-made artificial water bodies at the park. In Kolkata, there are four distinct seasons: summer, monsoon, winter, and autumn. The yearly temperature ranges from 43°C to 9°C. On average, 1400mm of rain falls annually. Here, the soil profile is alluvial.

Identification of the Specimens

The data was taken from various area of the park everyday by observation. Use light trap method twice every three months in the evening for moths or other nocturnal insects. Each species was meticulously captured on camera or a mobile device. There were various methods applied for collecting the specimens such as hands plucking, beating, and sweeping. Capture nets, hand gulfs, small containers, and forceps this type of tools was also used to collect specimens for specimens such as hands plucking,

beating, and sweeping. The collected specimens were identified by the expert, with the help of published journal and books.

Figure 1: Map of the study area

RESULTS

Altogether, 55 species referring to 53 genuses under 38 families and 10 orders of insects were recorded from Ecopark, kolkata. Among of them, order Hymenoptera represented by 14 species (table:6) followed by Hemiptera with 11 species (table:5), Coleoptera with 10 species (table:2), Diptera with 7 species (table:4), Orthoptera with 6 species (table:9). Mantodea, Blattodea each with 2 species (table:1 and 8), and Dermaptera, Isoptera, Zygentoma each with 1 species (table:3,7 and 10). From the identified species, 38 families of insects reported from this urban park, order Hemiptera (20%) shared maximum families(22%) followed by Hymenoptera, Diptera (16%), Coleoptera (13%), Orthoptera (10%), Mantodea (5%), Isoptera, Zygentoma, Dermaptera, each (3%). (Figure 2) and the lowest number of families represented by order Blattodea (2%), considering the diversity in generic level, Hymenoptera has shared maximum genera (22%), followed by Hemiptera (21%), Coleoptera (19 %), Diptera (13%) and Orthoptera (11%), Mantodea, Blattodea each with 4% and Dermaptera, Isoptera, Zygentoma, Blattodea each with only 2%. (Figure 3) .Like the generic diversity, Hymenoptera is also more diversified in terms of species diversity and shared 25% of total species of this urban park, followed by Hemiptera (20%), Coleoptera (18%), Diptera (13%), Orthoptera (11%), Mantodea (4%), Blattodea (3%) and Dermaptera, Zygentoma, Isoptera each with only (2%) (Figure 4). Considering the number of species (family-wise) reported from this urban park, the maximum number of species is represented Apidae, Formicidae of the order Hymenoptera (4); followed by

Chrysomelidae, Cerambycidae of the order Coleoptera, Vespidae of the order Hymenoptera each 3; Blattidae of the order Blattodea, Coccinellidae of the order Coleoptera, Culicidae of the order Diptera, Acrididae, Gryllidae of the order Orthoptera each 2.Only single species was represented by twenty eight families, namely, Labiduridae of the order Dermaptera, Lampyridae, Meloidae of the order Coleoptera; Stratiomyidae, Calliphoridae, Muscidae ,Asilidae and Syrphidae of the Pyrrhocoridae, order Diptera; Lygaeidae, Aphrophoridae, Cicadellidae, Pseudococcidae, Alydidae, Membracidae, Scutelleridae, Fulgoridae, Coreidae of the order Hemiptera; Crabronidae, Ampulicidae, Sphecidae of the order Hymenoptera; Termitidae of the Isoptera; Mantidae, Hymenopodidae of the order Mantodea; Pyrgomorphidae, order Tettigoniidae of the order Orthoptera and Lepismatidae of the order Zygentoma (Figure 5).

Table1: List of Blattodea reported from Ecopark

SL NO.	Order	Family	Genus	Scientific Name
1	Blattodea	Blattidae	Periplaneta	Periplaneta americana (Linnaeus, 1758)
2	Blattodea	Blattidae	Neostylopyga	Neostylopyga rhombifolia (Stoll, 1813)

Table 2: List of Coleoptera reported from Ecopark

SL NO.	Order	Family	Genus	Scientific Name
1	Coleopter a	Lampyridae	Abscondita	Abscondita anceyi (E.Olivier, 1883)
2	Coleopter a	Coccinellidae	Cheilomenes	Cheilomenes sexmaculata (Fabricius, 1781)
3	Coleopter a	Coccinellidae	Henosepilachn a	Henosepilachna vigintioctopunctata (Fabricius, 1775)
4	Coleopter a	Chrysomelida e	Cassida	Cassida circumdata (Herbst, 1799
5	Coleopter a	Chrysomelida e	Aulacophora	Aulacophora indica (Gmelin, 1790)
6	Coleopter a	Chrysomelida e	Platycorynus	Platycorynus peregrinus (Herbst, 1783)
7	Coleopter a	Cerambycidae	Chlorophorus	Chlorophorus annularis (Fabricius, 1787)
8	Coleopter a	Cerambycidae	Batocera	Batocera rufomaculata (Degeer, 1775)
9	Coleopter a	Cerambycidae	Stromatium	Stromatium barbatum (Fabricius, 1775)
10	Coleopter a	Meloidae	Hycleus	Hycleus polymorphus (Pallas, 1771)

Table 3: List of Dermaptera reported from Ecopark

SL.	NO.	Order	Family	Genus	Scientific Name
-	1	Dermaptera	Labiduridae	Nala	Nala lividipes (Dufour, 1820)

Table 4: List of Diptera reported from Ecopark

SL.NO.	Order	Family	Genus	Scientific Name
1	Diptera	Stratiomyidae	Hermetia	Hermetia illucens (Linnaeus, 1758)
2	Diptera	Calliphoridae	Chrysomya	Chrysomya megacephala (Fabricius, 1794)
3	Diptera	Muscidae	Musca	Musca domestica Linnaeus, 1758
4	Diptera	Asilidae	Clephydroneura	Clephydroneura sp.
5	Diptera	Syrphidae	Mesembrius	Mesembrius bengalensis (Wiedemann, 1819)
6	Diptera	Culicidae	Aedes	Aedes albopictus (Skuse, 1895)
7	Diptera	Culicidae	Culex	Culex quinquefasciatus Say, 1823

Table 5: List of Hemiptera reported from Ecopark

SL.NO.	Order	Family	Genus	Scientific Name
1	Hemiptera	Lygaeidae	Spilostethus	Spilostethus hospes (Fabricius, 1794)
2	Hemiptera	Pyrrhocoridae	Dysdercus	Dysdercus cingulatus (Fabricius, 1775)
3	Hemiptera	Aphrophoridae	Philaenus	Philaenus spumarius (Linnaeus, 1758)
4	Hemiptera	Cicadellidae	Nephotettix	Nephotettix sp.
5	Hemiptera	Gerridae	Limnogonus	Limnogonus sp.
6	Hemiptera	Pseudococcidae	Phenacoccus	Phenacoccus sp.
7	Hemiptera	Alydidae	Riptortus	Riptortus sp.
8	Hemiptera	Membracidae	Leptocentrus	Leptocentrus sp.
9	Hemiptera	Scutelleridae	Chrysocoris	Chrysocoris sp.
10	Hemiptera	Fulgoridae	Zanna	Zanna sp.
11	Hemiptera	Coreidae	Homoeocerus	Homoeocerus sp.

Table 6: List of Hymenoptera reported from Ecopark

SL.NO.	Order	Family	Genus	Scientific Name
1	Hymenoptera	Apidae	Apis	<i>Apis dorsata</i> Fabricius, 1793
2	Hymenoptera	Apidae	Apis	Apis florea Fabricius, 1787
3	Hymenoptera	Apidae	Apis	Apis cerana Fabricius, 1793
4	Hymenoptera	Apidae	Amegilla	Amegilla cingulata (Fabricius, 1775)
5	Hymenoptera	Vespidae	Vespa	Vespa tropica Linnaeus, 1758
6	Hymenoptera	Vespidae	Delta	Delta pyriforme (Fabricius, 1775)
7	Hymenoptera	Vespidae	Polistes	Polistes olivaceus (Deg., 1773)
8	Hymenoptera	Crabronidae	Liris	<i>Liris</i> sp.
9	Hymenoptera	Ampulicidae	Ampulex	Ampulex compressa (Fabricius, 1781)
10	Hymenoptera	Sphecidae	Chalybion	Chalybion bengalense (Dahlbom, 1845)
11	Hymenoptera	Formicidae	Oecophylla	Oecophylla smaragdina (Fabricius, 1775)
12	Hymenoptera	Formicidae	Camponotus	Camponotus compressus (Fabricius 1787)
13	Hymenoptera	Formicidae	Tetraponera	Tetraponera rufonigra (Jerdon 1851)
14	Hymenoptera	Formicidae	Solenopsis	Solenopsis geminata (Fabricius, 1804)

Table 7: List of Isoptera reported from Ecopark

SL.NO.	Order	Family	Genus	Scientific Name
1	Isoptera	Termitidae	Coptotermes	Odontotermes sp.

Table 8: List of Mantodea reported from Ecopark

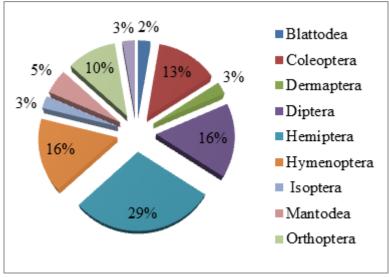

	SL.NO.	Order	Family	Genus	Scientific Name
	1	Mantodea	Mantidae	Hierodula	Hierodula patellifera Serville, 1839
Ī	2	Mantodea	Hymenopodidae	Odontomantis	Odontomantis planiceps Haan, 1842

Table 9: List of Orthoptera reported from Ecopark

SL.NO.	Order	Family	Genus	Scientific Name
1	Orthoptera	Acrididae	Gesonula	Gesonula mundata (Walker, 1870)
2	Orthoptera	Acrididae	Trilophidia	Trilophidia annulata (Thunberg, 1815)
3	Orthoptera	Gryllidae	Gryllodes	Gryllodes sigillatus (Walker, 1869)
4	Orthoptera	Gryllidae	Acheta	Acheta domesticus (Linnaeus, 1758)
5	Orthoptera	Pyrgomorphidae	Atractomorpha	Atractomorpha crenulata Fabricius, 1793
6	Orthoptera	Tettigoniidae	Phaneroptera	Phaneroptera falcata Poda, 1761

Table 10: List of Zygentoma reported from Ecopark

	SL.NO.	Order	Family	Genus	Scientific Name
Ī	1	Zygentoma	Lepismatidae	Lepisma	Lepisma saccharinum Linnaeus, 1758

Fig 2: Percentage of family diversity in each order

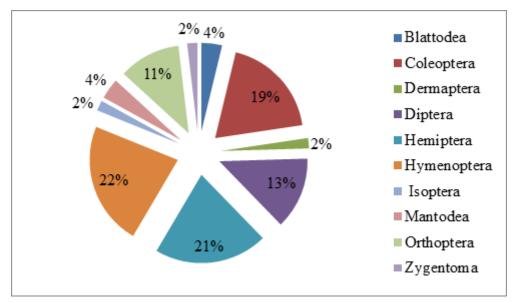


Figure 3: Percentage of generic diversity in each order

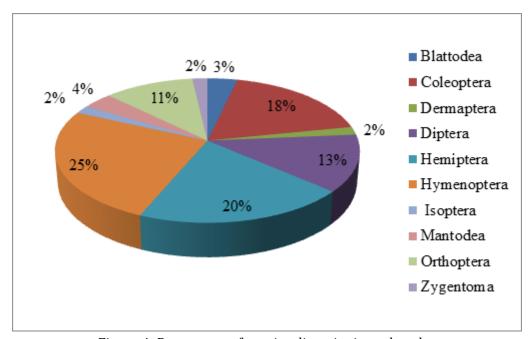


Figure 4: Percentage of species diversity in each order

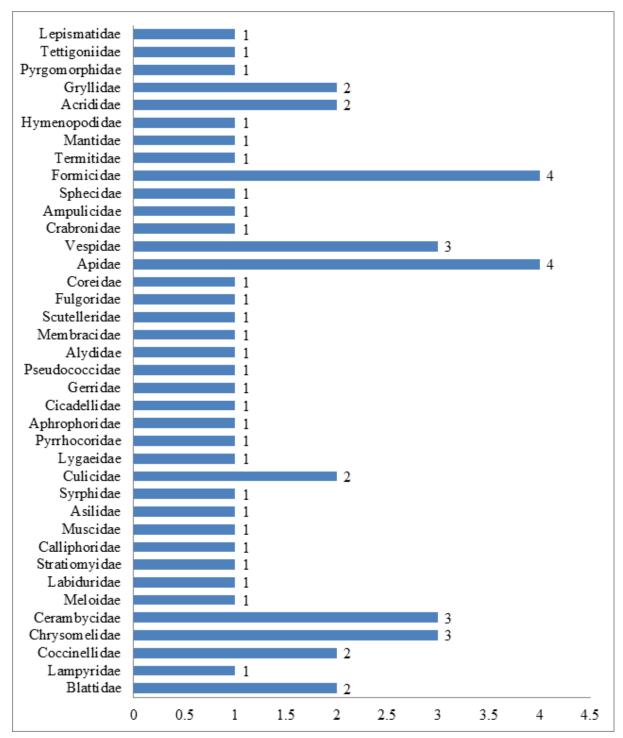


Figure 5: Number of species (Family-wise) in Ecopark

DISCUSSION

According to a baseline study, more than 300 floral species are present in this urban park's natural environment. The presence of over 300 floral species in this 480 acres protected areas with 104 acres water body indicated a potentially diverse insect population. A total of 55 species of insects belonging to 53 genera, 38 families, and 10 orders support the aforementioned perspective. In this study, the order Hymenoptera is discovered to be the most dominant group of insects in terms of generic and species diversity order with highest number

of families. Hymenoptera are commonly used as ecological biomarkers of ecosystem health. Hymenoptera are mostly pollinators and phytophagous creatures. There is a butterfly garden created in this urban park, which provide the existence of ideal habitats for Lepidoptera, on the other hands it also provides the food for Hymenoptera such as wild flower plant for nectar. Majority of Hymenoptera species depend on their wild flower plants. That's why the number of Hymenoptera diversity is increase the in this urban park. Hemiptera are well recognized for being plant-dwelling insects and they can be found in all vegetation strata. The presence of diverse plant species frequently influences the assemblages of herbivorous hemipterans. After the order Hymenoptera, they are the second most prominent group in this urban park. This indicates that there are sustenance plants and a diverse collection of floral diversity is present this area. The reported species of the Order Coleoptera are mostly phytophagous, Plantdwellers which is followed by Hemiptera. Here, the variety of Diptera is also reported. Some dipterans are visitors or pollinators of plants; some significant species are act like predators or pests. Several families of this order, such the Muscidae, Calliphoridae and Sarcophagidae, have nurtured attachment with human habitations and people. Therefore, their availability indicates the human interference in this urban park. The reported Orthoptera are mostly Grassland preferable insect. Some of them are crop- plant eater. Some of them are ground dweller. The remaining orders of the reported species namely Blattodea, Dermaptera, Isoptera, Mantodea, Zygentoma also indicate the rich ground biodiversity, plant diversity, human interaction in this urban park.

CONCLUSION

Ecopark is one of the protected urban parks in Kolkata, West Bengal. Urban parks, specifically natural evergreen wilderness, are the main repository for biodiversity in a city because they usually provide several floral species of various ages, classes, canopies, undergrowth and overgrowth vegetation. As an outcome, it is always remarkable to study the biodiversity of urban parks in cities where the natural habitat mostly never been removed. This is the first analysis of the variety of insects in Ecopark. The analysis conducted in this study offers fundamental information about the insect diversity in an urban park in a metropolis city. However, there is still a lot of more research that must be done in the long run for the future but the results signified that, besides national park, sanctuary; urban parks in cities also play a crucial role in preserving biodiversity.

ACKNOWLEDGEMENT

The authors are thankful to all the members of Nature-Mates Nature Club. We would specially like to thanks The West Bengal Housing Infrastructure Development

Corporation (HIDCO) for allowing us to conduct the research for conservation purposes at Ecopark in Kolkata.

REFERENCES

- [1] Margules, C.R. and Pressey, R.L., 2000. Systematic conservation planning. Nature, 405(6783), 243-253.
- [2] Wilson, E.O., 1992. The diversity of life Harvard University press. Cambridge, Massachusetts, 424.
- [3] Haaland, C., Naisbit, R.E. and BERSIER, L.F., 2011. Sown wildflower strips for insect conservation: a review. Insect Conservation and Diversity, 4(1), 60-80.
- [4] Thompson, B. and McLachlan, S., 2007. The effects of urbanization on ant communities and myrmecochory in Manitoba, Canada. Urban Ecosystems, 10(1), 43-52.
- [5] Aronson, M.F., La Sorte, F.A., Nilon, C.H., Katti, M., Goddard, M.A., Lepczyk, C.A., Warren, P.S., Williams, N.S., Cilliers, S., Clarkson, B. and Dobbs, C., 2014. A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the royal society B: biological sciences, 281(1780), 20133330.
- [6] New, T.R., 2015. Insect conservation and urban environments, Cham: Springer. 125-129
- [7] Nielsen, A.B., Van Den Bosch, M., Maruthaveeran, S. and van den Bosch, C.K., 2014. Species richness in urban parks and its drivers: A review of empirical evidence. Urban ecosystems, 17(1), 305-327.
- [8] Cornelis, J. and Hermy, M., 2004. Biodiversity relationships in urban and suburban parks in Flanders. Landscape and Urban Planning, 69(4), 385-401.
- [9] Lucky, A., Savage, A.M., Nichols, L.M., Castracani, C., Shell, L., Grasso, D.A., Mori, A. and Dunn, R.R., 2014. Ecologists, educators, and writers collaborate with the public to assess backyard diversity in The School of Ants Project. *Ecosphere*, *5*(7),1-23.
- [10] Walker, C., Ethington, E., Stark, A., 2016, Who Is Your Champion? Science and Children, 053(9)