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Abstract 
Advances technologies accompanied by a proliferation of genomic data 
across many scientific disciplines and virtually all disease areas which 
include latest technologies that can profile genomes, transcriptomes, 
proteomes and metabolomes raising a plethora of analytic and 
computational challenges. The general term Bioinformatics refers to a 
multidisciplinary field involving computer scientists, computational 
biologists, systems biologists, mathematical modelers, and statisticians 
exploring different facets of the data ranging from organizing, retrieving, 
storing and subsequent analysis of biological data. Statisticians have a 
unique perspective and skill set that places them at the center of this 
process. One of the key attributes that sets statisticians apart from other 
scientists is their understanding of variability and uncertainty 
quantification. These are essential considerations in building productive 
methods for biological discovery and validation, especially for complex, 
high-dimensional data as encountered in genomics. The experts of 
statistics are “data scientists” who understand the scientific effect of 
sampling design decisions on downstream analysis, potential propagation 
of errors from multi-step processing algorithms, and the potential loss of 
information from overly reductionistic feature extraction. They are 
experts in inferential reasoning, which equips them to recognize the 
importance of multiple testing adjustments to avoid reporting spurious 
results as discoveries, and to properly design algorithms to search high-
dimensional spaces and build predictive models while obtaining accurate 
measures of their predictive accuracy. Biomedical science have moved to 
a place where huge data are becoming ubiquitous in research and even 
clinical practice. This provides great opportunities for the statistical 
community to play a crucial role in pushing the science forward, as we 
equip other scientists with the tools they need to extract the valuable 
information. 
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INTRODUCTION 
Statistics have been involved in different aspects of bioinformatics, they have been 

hesitant to get heavily involved in other discipline. Statisticians are primarily interested 

in end-stage modeling after all of the data already been collected and preprocessed 

Baladandayuthapani et.al., 2014). Statistical expertise in the experimental design and 

low-level processing stages are equally  important if not more important than end-stage 

modeling, since errors and inefficiencies in these steps propagate into subsequent 

analysis and can preclude the possibility of making new discoveries and scientific 

conclusions even with the best constructed end-stage modeling strategies(Baggerly et. 

al., 2010). This has resulted in a missed opportunity for the statistical community to 

play a larger leading role in bioinformatics that in many cases has been instead assumed 

by other quantitative scientists and computational biologists and a missed opportunity 

for biologists as well to more efficiently learn true reproducible biological insights from 

their data (Bauer et. al., 2010). 

Genomics:  Primarily DNA-based assays measure genomic events at the DNA level 

before transcription. Relevant DNA alterations include natural variability in germ line 

genotype or the DNA sequence across individuals that sometimes affect biological 

function and disease risk. Germ line or somatic genomic aberrations including various 

types of mutations including substitutions, insertions, deletions and translocations as 

well as broader changes in the genome including loss of entire chromosomes or parts or 

loss of heterozygosity (LOH) involving the loss of one of two distinct alleles originally 

possessed by the cell. Diploid organisms such as humans have two copies of each 

autosome (i.e. non-sex chromosomes), but many diseases are associated with 

aberration in the number of DNA copies in a cell, especially carcinogenic part (Pinkel 

and Albertson, 2005). Most of the carcinogenic diseases acquire DNA copy number 

changes manifesting as entire chromosomal changes segment-wise changes in the 

chromosome or modification of the DNA folded structure. Such cytogenetic 

modifications during the life of the patient can result in disease initiation and 

progression by mechanisms wherein disease-suppression genes are lost or silenced, or 

promoter genes that encourage disease progression are amplified. The detection of 

these regions of aberration has the potential to impact the fundamental knowledge and 

treatment of many types of diseases and can play a role in the discovery and 

development of molecular-based individual therapies. In recent years, cytogeneticists 
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were limited to visually analyzing whole genomes with a microscope by 

 karyotyping or chromosome analysis. In mid-70’s and 80’s the development and 

application of molecular diagnostic methods such as polymerase chain reaction (PCR), 

Southern blots and flourescence in situ hybirdization (FISH) allowed clinical 

researchers to make many important advances in genetics, including clinical 

cytogenetics, moreover these  latest techniques have some limitations. Initially, they are 

time-consuming and labor-intensive and only a limited number and regions of the 

chromosome can be tested simultaneously. Further, because the probes are targeted to 

specific chromosome regions, the analysis requires basic knowledge of an abnormality 

and was of limited use for screening complex karyotypes. Recently scientists have 

developed techniques that integrate aspects of both traditional and molecular 

cytogenetic techniques called chromosomal micorarrays (Vissers et al., 2010). These 

high-throughput high-resolution microarrays have allowed researchers to diagnose 

numerous subtle genome-wise chromosomal abnormalities that were previously 

undetectable and find many cytogenetic abnormalities in part or all of a single gene. 

Such information is beneficial for biologists to detect emerging genetic disorders and 

also provide better understanding of the pathogenic mechanisms of chromosomal 

aberrations. 

There are two types of chromosomal microarrays:  

(i) Array-based Comparative genomic hybridization (aCGH arrays) and  

(ii) Single nucleotide polymorphism microarrays (SNP arrays).  

CGH-based methods were developed to survey DNA copy number variations across a 

whole genome in a single experiment (Kallioniemi et al., 1992) with CGH, differentially 

labeled test and reference genomic DNAs are co-hybridized to normal metaphase 

chromosomes, and fluorescence ratios along the length of chromosomes provide a 

cytogenetic representation of the relative DNA copy number variation. Chromosomal 

CGH resolution is limited to 10–20 Mb, thus, any aberration smaller than that will not be 

detected. Comparative genomic hybridization (aCGH) is a subsequent modification of 

CGH that provided greater resolution by using microarrays of DNA fragments rather 

than metaphase chromosomes (Pinkel et al., 1998; Snijders et al., 2001). These arrays 

can be generated with different types of DNA preparations. One method uses bacterial 
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artificial chromosomes (BACs), each of which consists of a 100-200 kilobase DNA 

segment. Other arrays are based on complimentary DNA (Pollack et al. 1999) or oligo 

nucleotide fragments (Lucito et al., 2000). Similar to the CGH analysis, the resultant map 

of gains and losses is obtained by calculating fluorescence ratios measured via image 

analysis tools. 

SNP arrays are most common types of high-resolution chromosomal microarrays (Mei 

et al., 2000). SNPs, or single nucleotide polymorphisms are single nucleotides in the 

genome in which variability across individuals or across paired chromosomes has been 

observed. Scientistists have identified more than 50 million SNPs in the human genome. 

SNP arrays take advantage of hybridization of strands of DNA derived from samples 

with hundreds of probes representing unique nucleotide sequences. As with aCGH, SNP-

based microarrays quantitatively determine relative copy number for a region within a 

single genome. Platform-specific specialized software packages are used to align the 

SNPs to chromosomal locations, generating genome-wise DNA profiles of copy number 

alterations and allelic frequencies that can then be interrogated to answer various 

scientific and clinical questions. Note that unlike aCGH arrays, SNP arrays have the 

advantage of detecting both copy number alterations as well as LOH events given the 

allelic fractions, typically referred to as the B-allele frequencies (Beroukhim et al., 

2006). They also provide genotypic information for the SNPs, which when considered 

across multiple SNPs can be used to study different haplotypes. SNP array analysis of 

germ line samples have been extensively used in genome-wide association studies 

(GWAS) to find genetic markers associated with various disease of interest (Yau and 

Holmes, 2009) . 

The initial human genome project involved a complete sequencing of a human genome, 

which took 13 years (1990–2003) and cost roughly $3 billion. Over the last decade 

significant amendments have been made in the hardware and software undergirding 

sequencing leading to next generation sequencing (NGS) which can now be used to 

sequence an entire human genome in less than a day for a cost of about $1000. This data 

sequencing obtained by applying NGS to DNA, DNAseq, can be used to completely 

characterize genotypes in GWAS studies and to characterize genetic mutations for 

cancer tumors and other diseased tissue. Many types of mutations can be characterized 

including point mutations, deletions, insertions and translocations. It can also be used to 
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estimate copy number variation and LOH throughout the genome. Time and Cost of 

sequencing is exactly determined by depth of sequencing. When focus is on common 

mutational variants and copy number determination, low depth sequencing (8x–10x) 

may be sufficient, but much higher depth is required if rare variants are yet to be 

detected. Targeted sequencing is performed to focus on specific parts of the genome, e.g. 

whole exome sequencing for which the gene coding regions only are sequenced. 

Proteomics: These emerging technologies allow direct quantification of protein 

expression as well as post-translational events. Although much more difficult to study 

than RNA or DNA because their frequency levels span many orders of magnitude. It is 

important to study proteins as these play a functional role in cellular processes and 

numerous studies have found that mRNA expression and protein abundance often 

correlate poorly with each other. Here several important proteomic technologies are 

available that involve estimating absolute or relative abundance levels, including low to 

moderate assays that can be used to study small numbers of pre-specified proteins and 

high-throughput methods that can survey a larger scale of the proteome. 

Transcriptomics: Earlier work related to the measurement of gene mRNA expression 

data were based on a “one-gene-at-time” process by using hybridization based methods 

such as Northern Blots and Reverse transcription polymerase chain reaction (RT-PCR) 

experiments (Alwine et al., 1977). Broadly, the purpose of these low-throughput 

experiments was to measure the size and abundance of the RNA transcribed for an 

individual gene using cellular RNA extraction procedures applied to multiple cells from 

a organism or sample. These experiments were typically time-consuming and involved 

selection of individual genes to assay expression and were mostly hypothetical. The 

advent of microarray-based technologies in the mid-1990’s then automated these 

techniques to simultaneously measure expressions of thousands of genes in parallel. 

This shifted gene expression analyses from mostly hypothesis driven endeavors to 

hypothesis generating ones that involve an unbiased exploration of the expression 

patterns of the entire transcriptomics. The major types of analysis can be 

predominantly classified into three main categories (Seidel, 2008). The first reported 

works in microarrays involved spotted microarrays developed at Stanford University 

(Schena et al., 1998). This process involves printing libraries of PCR products or long 

oligo nucleotide sequences from a set of genes onto glass slides via robotics and then 

estimating the gene expression intensities through fluorescent tags (Brown and 
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Botstein,1999). Other  research institutions developed laboratories for printing their 

own spotted microarrays, which had variable data quality given the challenge of 

reproducible manufacture of the arrays. Affymetrix was the first company to 

standardize the production of microarrays, becoming the most established and widely-

used commercial platform for measure high-throughput gene expression data. Their 

arrays consist of 25-mer oligo-nucleotides synthesized on a glass chip (Pease et al., 

1994). As opposed to the single sequence of probes used in spotted microarrays, 

Affymetrix uses a set of probes to analyze and summarize expression of the genes. 

Subsequently, other companies, including Illumina, Agilent and Nimblegen, have 

produced microarrays involving in situ synthesis, with each using a different type and 

length of oligonucleotide as well as photo-chemical process for measurement of gene 

expression (Blanchard et al., 1996). As described in the next section, the development of 

more cost-effective and efficient sequencing technologies has led to the use of next 

generation sequencing (NGS) technologies applied to RNA, RNAseq for gene expression. 

Although each technology has its own characteristics and caveats, the basic read outs 

contain expression level estimates for thousands on genes on a per-sample basis. This 

has been used for discovery of the relative fold change in disease versus normal tissues 

(Alizadeh et al., 2000) and among different disease tissues (Ramaswamy et al., 2001). 

However, these technologies have been used to discover molecular signatures that can 

differentiate subtypes within a given disease that are molecularly distinct (Guinney et 

al., 2015). Clinical applications include but are not limited to development of diagnostic 

and prognostic indicators and signatures (Cardoso et al., 2008; Bueno-de Mesquita et 

al., 2007; Bonato et al., 2011). 

Integromics: The emerging field of “integromics” is integrative analysis of multi-

platform genomics data. The integration of data across diverse platforms has sound 

biological justifications because of the natural interplay among diverse genomic 

features. Looking across platforms, attributes at the epigenetic and DNA level such as 

methylation and copy number variation can affect mRNA expression, which in turn is 

known to influence clinical outcomes of disease through proteins and subsequent post-

translational modifications.  Statistically, there are multiple types of data integration 

methods depending on the scientific question of interest, and the taxonomy can be 

classified into three broad categories (Kristensen et al., 2014). The first class of methods 

deal with understanding mechanistic relationships between different molecular 
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platforms  for cross-platform interactions such as DNA-mRNA, mRNA-protein etc. The 

second class of methods involves the identification of latent groups of patients or genes 

using the multi-platform molecular data and can be cast as either a classification or 

clustering problems. The third class of methods deals with prediction of an outcome or 

phenotype for prospective patients. 

CONCLUSION:  

Statistics has played a significant role in helping develop rigorous design and analysis 

tools for researchers to use to extract meaningful biological information from the multi-

platform genomics data. Their deep understanding of the scientific process has uniquely 

equipped them to serve a significant role in this venture. One of the key statistical 

concepts is that unified models that borrow strength across related elements enjoy 

statistical benefits over piecemeal approaches, leading to more efficient estimation, 

improved prediction, and greater sensitivity and lower false discovery rates for making 

discoveries. This borrowing of strength can occur across samples within an object, 

across data types, and between data and biological knowledge in the literature. This 

concept at work in peak detection on the mean spectrum, incorporation of copy number 

and B-allele frequency to determine copy number estimates, borrowing of strength 

across samples to estimate underlying protein abundances, borrowing strength across 

samples to identify shared genomic copy number aberrations, incorporating pathway 

information into models  or their natural interrelationships. This principle is also at 

work in flexible modeling approaches that borrow strength across nearby observations 

in functional or image data using basis function modeling and regularization priors, a 

strategy that has been applied to MS, 2DGE, copy number, and methylation data. The 

concept of regularization is used when smooth functional data in normalization of 

microarrays, when penalizing regression coefficients in high-dimensional regression 

models, when denoising spectra before performing peak detection, and when 

segmenting DNA copy number data. New technologies are continually being developed 

and introduced at a rapid rate, and there are many new challenges these data will bring. 

It is believed that statisticians will be involved on the front lines of methods 

development for these technologies as they are introduced, and that we are involved in 

all aspects of the science including design, preprocessing and end-stage analysis. Thus, 

methods and approaches developed on older platforms have some translational 

importance to the new ones, at least in terms of key issues and the underlying principles 
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behind effective solutions to them. There are a number of areas where more work is 

clearly needed and future developments are possible. One key area is in integrative 

analysis. This field is really just getting started and the scientific community is in dire 

need of new methods for integrating information across multiple platforms to gain 

more holistic insights into the underlying molecular biology. These methods must 

balance statistical rigor in building connections, computational efficiency to scale up to 

big data settings, and interpretability of results so our collaborators can make sense of 

them. Also, given the extensive efforts in the biological research community to build up 

knowledge resources that are freely available online, such the recent large-scale federal 

efforts for unified databases especially in cancer e.g. NCI Genomic Data Commons 

(Grossman et al. 2016). Hence, the statistical community needs to find better ways to 

incorporate this information into the modeling, which can lead to improved predictions 

and discoveries as well as enhanced interpretability of the results. Given the 

interdepencies underlying genetic processes, pathway information is one of the most 

important types of information that we need to better incorporate. 
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